
Arbitrary Precision Computation of Modular Forms

Caelen Feller

Supervised by Prof. Jan Manschot

School of Mathematics, Trinity College Dublin

Abstract

We investigate and develop algorithms for arbitrary precision computation of mod-
ular forms using their q-expansions, and extend this to generalisations such as mock
forms and higher level forms, implementing these algorithms in C. We develop an
efficient plotting interface in C for complex functions, with particular optimisations
for modular forms and functions.

1. Introduction

Modular forms, a particular class of holomorphic, complex-valued function on
the upper half-plane, present a computationally interesting topic in numerical evau-
lation. There are useful optimisations to be made due to their self-similar, easily
reduced structure and representations as quickly converging power series. A mero-
morphic extension to modular forms, modular functions, present similar opportuni-
ties. The most advanced algorithms for their numerical evaulation are detailed in
[3] and [5] and implemented in the C library Arb [4] by Johansson. We detail and
implement a more direct but less efficient algorithm. We discuss application of these
approaches to generalisations such as “mock modular forms” - E2, and extension to
other modular forms for congruence subgroups.

While numerical computation of modular forms has applications in sphere pack-
ing [10] and the evaluation of partition functions in physics [8], in this project the
primary application is visualisation of their values. Visually representing complex-
valued functions shows the ways in which the complex plane is transformed, repre-
sents points of interest (zeroes, singularities) and complex-analytic properties such as
conformality. Though obvious for simpler, algebraic functions for more complicated,
transcendental functions visualisation builds intuition not achievable otherwise. We
develop optimised software to produce a broad range of these plots in this project.

2. Domain Colouring

The four dimensional nature of complex valued functions necessitates mapping
the complex plane to a colour space to visually represent a complex valued function
(on the plane or on a 3D surface), or ignore information as is done in ”vector-flow”
representations of complex valued functions. The map to a colour space is known as
a colour-function of the complex plane, or “domain colouring” of a complex-valued
function.

1

There are efficient implementations of this functionality in Mathematica nor in
Sage, two of the leading computer algebra systems, though non standard implemen-
tations in packages like NumPy allow improvements - [2]. As a result CPlot (the
complex plotting library developed in this project) was made in C for maximum
efficiency, and access from high level systems can be impemented after.

Figure 1: Colour Spaces

(a) RGB Cube (b) HSL Cylinder (c) HSV Cylinder

The colour space used for a computer screen is RGB colour space, a cartesian
cube with red, green and blue light varying in intensity from dim to bright, creating
all visible colours. Alternative colour spaces include the cylindrical colour spaces
HSV and HSL (Hue, Saturation, Value, Lightness), where explicit white-black gradi-
ents are used for the radius an height, while hue is the angle, a wheel going through
all colours, as demonstrated in Figure 1.

The standard colour function used in domain colouring is shown in Figure 2.
Mathematically, it is defined below, though the constants can change to emphasise
the argument or magnitude of values more.

Figure 2: Standard Colour Function

Identity

H =
arg(z)

2π
S = 1

L = 1− 2−|z|

(z − 0.5(1 + i))/z2

Further colour functions are possible, see Appendix A for further functions and their plots.

3. Modular Forms & Functions

The structure of and computation of modular forms hinges on their transformation
behaviour under SL2(Z), a finitely generated integer matrix group. The following
definitions and properties are standard, for proofs see [7], [9].

2

3.1. Special Linear Group

Definition 3.1 (Special Linear Group).

SL2(Z) =

{(
a b
c d

) ∣∣∣ a, b, c, d ∈ Z, ad− bc = 1

}
SL2(Z) = 〈S, T 〉 , S =

(
0 −1
1 0

)
T =

(
1 1
0 1

)
We define the group action of SL2(Z) as a fractional linear transformation on H

Definition 3.2 (Group Action - Möbius Transformation).(
a b
c d

)
· z =

za+ b

zc+ d
, z ∈ Ĉ (1)

Definition 3.3 (Fundamental Domain). A fundamental domain F for a subgroup
Γ of SL2(Z) is a closed subset of H such that:

1. Every z ∈ H is Γ-equivalent to a point in the closure of F .

2. No two distinct points in H are Γ-equivalent.

Figure 3: Principle Fundamental Domain for SL2(Z): F = {z ∈ H| |<(z)| ≤ 1/2, |z| ≥ 1}

3.2. Modular Forms

A function f :H→ C transforms as a modular form of weight k if it satisfies

f(τ + 1) = f(τ), f(−1/τ) = (τ)kf(τ) (2)

Consequently, such an f is determined by its values on F (shaded region in fig 3).

Definition 3.4 (Modular Form). A function f :H→ C is a modular form of weight
k if

1. f transforms as a modular form of weight k

2. f is holomorphic on H.

3. f is holomorphic at i∞

3

Lemma 3.5. As f(τ + 1) = f(τ) every modular form will have a fourier series,
expressible as

f(τ) =
∑
n∈Z

anq
n, q = e2πτi, the form’s “q-series”

This is the form in which typically evaluate modularly transoforming functions, as
it is a convergent power series in terms of q, a point on the complex unit disk.

Definition 3.6 (The Eisenstein Series of Weight k).

Gk(τ) =
∑
m,n∈Z
(m,n)6=0

1

(mτ + n)k
= 2ζ(k)

(
1− 2k

Bk

∞∑
n=1

nk−1qn

1− qn

)
(3)

Where ζ(k) is the Riemann Zeta Function and Bk is the k-th Bernoulli Number.

Proposition 3.7. Gk is a modular form of weight k for SL2(Z).

Theorem 3.8. The modular forms of weight k, Mk(SL2(Z)), form a finite dimen-
sional, complex vector space, with basis a combination of G4 and G6.

An algorithm to find these bases is discussed in [9], and implemented in Sage, though
it’s not relevant to my computatations which take forms in this form already, or as
combinations of higher weight Eisenstein Series.

3.3. Modular Functions

Definition 3.9 (Modular Function). A function f :H→ C is a modular function of
weight k if

1. f transforms as a modular form of weight k
2. f is meromorphic on H.
3. f is meromorphic at i∞

The primary example of this is the Klein j-invariant, which can be defined as

j(z) = 1728
E4(z)3

E4(z)3 − E6(z)2
(4)

Ek =
1

2ζ(k)
Gk = 1− 2k

Bk

∞∑
n=1

nk−1qn

1− qn
(5)

Its name stems from the fact that is invariant under action by SL2(Z), and is thus
a weight 0 modular function, as proved in [7].

4. Computation

To compute a transcendental function to arbitrary precision, one typically applies
an argument reduction technique, and uses a rapidly convergent series exapansion
of the function to evaluate it, computing any error due to its truncation. [5]. For
example, to evaluate sin(x) using its Taylor series, we reduce the argument by the
period, decreasing the magnitude and improving convergence by avoiding catas-
trophic cancellation. [5] However, we first must establish a method for dealing with
arbitrarily large and precise numbers.

4

Figure 4: Plots of modular forms/functions

(a) E4(q) (b) E6(q) (c) j(q)

(For more plots, see Appendix A)

4.1. Arbitrary Precision and Interval Arithmetic

Numbers are represented programmatically to a specified level of precision as
linked collections of word sized limbs for countable rings, or as x ·2y for R, C, where
x is the “mantissa” and y the “exponent”, both arbitrary precision integers. These
representations suit binary formats and optimised arithmetic. These standards are
implemented in the MPFR and GMP libraries, both of which are used here.

While these representations are useful, and the current best solution for spe-
cialised algorithms, it is necessary to be constantly aware of rounding behaviour and
error propogation, which does not suit more general number theoretic and math-
ematical application. A more mathematically stable method allowing easier error
tracking and more predictable behaviour is interval arithmetic - representing inter-
vals around a number as a ball with arbitrary precision center and radius, rather
than the number itself. Arb, a C library, is the standard for ball arithmetic in numer-
ical computing [4], providing automatic error propogation for simple arithmetic and
implementations of many complex functions. As defined by Johansson, an “interval
implementation” of a function preserves set inclusion, and thus guarantees contain-
ment of the function’s correct value. This allows for integrated error tracking in the
numerical data structure. While there can be issues with error overestimation, this
is typically solvable by cautious analysis, as discussed in [4].

4.2. Error Bounding

As metioned in Section 4.1 simple arithmetic is handled by Arb. Thus, power
series computation is easily handled. The task of bounding and computing the error
caused by truncating the power series remains. The restrictions on the bounds given
give us motivation for the level of argument reduction neceassary to implement a
function. For the example of evaluation of Sine through its Taylor series, a bound
for the truncation error, given in the Arb documentation, is the current term of

the series. This follows from the fact that
∑∞

k=0
(−1)kx2k+1

(2k+1)!
has strictly decreasing,

alternating terms.

5

Theorem 4.1. For |q| < 1, q ∈ C,

∞∑
n=k

nKqn

1− qn
≤ |q|k

|1− q|

(
K∑
i=1

(
K

i

)
ki
(
|q| d
d|q|

)K−i
1

1− |q|

)
(6)

Proof.

∞∑
n=k

nKqn

1− qn
≤

∞∑
n=k

nK |q|n

|1− q|
≤ |q|k

|1− q|

∞∑
n=k

nK |q|n−k.

=
|q|k

|1− q|
(kK + (k + 1)K |q|+ . . .)

=
|q|k

|1− q|

(
K∑
i=1

(
K

i

)
ki
∞∑
n=0

nK−i|q|n
)

=
|q|k

|1− q|

(
K∑
i=1

(
K

i

)
ki
(
|q| d
d|q|

)K−i
1

1− |q|

)
(by Lemma 4.2)

Lemma 4.2.
∞∑
n=0

nkxn =

(
x
d

dx

)k
1

1− x
(7)

Note: This is a well known property of the polylogarithm function, Lik(x) =
∑∞

k=1
xk

kn

Proof. It is clear that

x
d

dx

∞∑
n=0

nkxn =
∞∑
n=0

nk+1xn

The property desired follows from induction on k with the base case of k = 0

Corollary 4.3. For |q| < 1, q ∈ C, we can bound the error of E4 using:

∞∑
n=k

n3qn

1− qn
≤ |q|k

|1− q|

(
k3

1− |q|
+

3k2|q|
(1− |q|)2

+
3k|q|(1 + |q|)

(1− |q|)3
+
|q|(|q|2 + 4|q|+ 1)

(1− |q|)4

)
(8)

This follows from a simple application of 4.1, as does a similar bound for E6.

4.3. Modular Forms

With an error bound found, we find a way to reduce the argument of a modular
form. Fortunately, the transformation rule of a modular form readily suggests a
method, taking the modular form to the fundamental domain of SL2(Z). As any
z ∈ H can be taken to F using the action of some γ ∈ SL2(Z), and SL2(Z) = 〈S, T 〉,
we can find some finite composition of S, T taking z to F (by definition of F and
logic in [1]).

Computationally, we can take z to within some error ε of F with an iterated
algorithm, similar to that used in the more geometrical proof that F is the funda-
mental domain of SL2(Z) presented in [1]. An implementation of this algorithm is

6

in the Arb library, which is used internally and by this project. At a given working
precision it does not guarrantee a transformation which will take the point to within
ε of F , but working precision doing so is guaranteed to exist.

As z ∈ F =⇒ |e2πiz| < 1, we can now apply the bounds from 4.2 to compute
Ek to arbitrary precision using its q-series. While faster converging series exist, this
method is the basis of generalisations to higher level forms in Section 6, and thus is
of interest and easier to understand.

In particular, more efficient methods discussed in [3] are implemented in Arb
for Ek. These use representations of E4 and E6 in terms of Jacobi theta functions,
which transform as modular forms of weight 1/2, and are forms for a congruence
subgroup. Their q-series converge more quickly as the exponent of q is quadratic in
n. This method also benefits from the use of rectangular splitting, which reorders
multiplication of the q-series in order to prioritise muliplications of similar precision
values. This allows for low level improvements at high-precision in muliplication.

To recap, the direct algorithm for computing E4, E6 can be summarised as

1. Reduce argument to F .

2. Calculate truncated q-series for reduced argument term by term.

3. Compute error for each value of k, finish when sufficiently small.

4. Apply tranformation rule, getting final value.

5. Implementation

5.1. CPlot - Arb based Plotting Library

The abstract structure of the plotting library is shown in Figure 5. The imple-
mentation provides the facility to plot any Arb-based interval implementation of a
function, in such a way that any zoom level or resolution is possible, memory al-
lowing. Due to “chunk-based” image processing methods (aka pipeline processing),
the only memory overhead is that incurred by parallel evaluation of values, which is
mostly a CPU intensive task unless memory caching is necessary - i.e. in repeated
evaluation of a reccurence relation. The chunks are cached to disk immediately, and
post processed into one image, allowing any other compositing to take place.

Figure 5: Library Structure for CPlot

In the colour function computation arbitrary precision can be discarded for ma-
chine size numbers once we are manipulating only RGB values, as a screen/image
format can only display a certain number of colours.

7

5.2. CForm - Modular Form Extension Library for Arb

The various algorithms for computing E4 and E6 are discussed in 4.3. The direct
methods are implemented in CForm, while the theta algorithms are in Arb. The
Eisenstein series of higher weight can be computed by reccurrence relation.

n∑
k=0

(
n

k

)
dkdn−k =

2n+ 9

3n+ 6
dn+2, dk = (k + 3/2)k!Gk+2

Another feature implemented in CForm, excepting the extensions discussed in Sec-
tion 6, is evaluation of polynomials and rational functions of E4 and E6, a common
task when evaluating arbitrary modular forms and functions. This is optimised by
decomposing into the theta series neceassary to compute the function. Simplification
is a futher optimisisation that could be implemented, requiring additional computer
algebra, the overhead of which is potentially not worth the gain at low precisions.

6. Further Research

6.1. Higher Level Modular Forms, Mock Modular Forms

There are two directions of generalisation explored by this project. The first are
modular forms for congruence subgroups of SL2(Z). The second generalisation is
that of relaxing the transformation rule, to allow what are called “mock modular
forms”, which have an error term when transformed. A notable example of this is
E2, defined in the same way as Ek where k = 2. For mock modular forms on SL2(Z),
the computation method is the same as detailed in Section 4, with a different error
bound depending on the q-series of the form, and computation of the transformation
error when brought to the fundamental domain.

6.2. Computational Techniques for Congruence Forms

The primary congruence subgroups of SL2(Z) are:

Γ0(N) =

{(
a b
c d

)
≡
(
a b
0 d

)
mod N

}

Γ1(N) =

{(
a b
c d

)
≡
(

1 b
0 1

)
mod N

}
Γ(N) =

{(
a b
c d

)
≡
(

1 0
0 1

)
mod N

}
Futher congruence subgroups exist, and many analogues of properties present for forms on SL2(Z)

apply. See [7] for a more complete treatment.

Modular forms on a congruence subgroup must be holomorphic at all points in the
fundamental domain of that subgroup, including at all “cusps” of that subgroup.

For Γ0(N) and Γ1(N), we can still expand forms as a fourier series in terms
of q. For Γ(N), we can only expand as a fourier series in terms of q1/N [6]. The
complication is while there exists a q-series, we cannot transform points to F in the
same way, as the fundamental domain of a congruence subgroup Γ can have cusps
- points where we get arbitrarily close to the real line, and thus the q-series does

8

Fundamental Domain for Γ1(4) - Cusps on R Visible

not quickly converge. Also, the same iterated algorithm to transform points to the
fundamental domain is more complicated, as we cannot only use the generators S
and T as in Section 4.3.

A potential solution to this is the use the abstraction of vector valued modular
forms, but this adds many computational complications we have not addresed yet.
As a result, a general solution for all congruence subgroups is difficult to achieve.

6.3. Planned or Incomplete Features

A major extension to the project that will be completed after the final release of
the libraries is the creation of a wrapper for the libraries in Sage and Mathematica,
using their C interfacing methods, WSTP and Cython/the Python C API. As a
wrapper for Arb itself is already present in Sage, deeper integration is more easily
achievable.

Potential improvements to the plotting interface rest in how it interfaces with
hardware, such as computing the graphs more simultaneously on clusters of machines
or graphics cards using CUDA or similar, and internal efficiency improvements.
Tuning the internal working precisions to allow maximum efficiency with minimum
visual impact is possible as certain areas of a graph need less/more detail. The
way to implement this under Arb’s philosophy of error handling would be to use
an adaptive subsampling method, giving greater weight to areas with high input
sensitivity, but this would require greater knowledge of function behaviour.

7. Conclusion

This project has achieved all goals in computing basic modular forms and func-
tions, and broached new ground in beginning to approach computation of more
general modular forms, but further research is needed to advance this. CPlot ac-
complishes all goals satisfactorily in terms of domain coloured graphs, and while
further features and optimisations are possible, they are not urgently needed, out-
side of the more interactive wrapper being developed.

9

The libraries developed will released online under an open source license, and
ideally any new advances in more general modular form computation can be con-
tributed to the Arb library as this smaller project progresses, in order to be subjected
to more rigorous testing, futher public use, and attention from major contributors
in the field such as Johansson.

References

[1] K. Conrad. Sl2 (z). Expository note available at http://www. math. uconn.
edu/˜ kconrad/blurbs.

[2] Empet. Visualizing complex-valued functions with Matplotlib and Mayavi.

[3] A. Enge, W. Hart, and F. Johansson. Short Addition Sequences for Theta
Functions. 2018.

[4] F. Johansson. Arb: Efficient Arbitrary-Precision Midpoint-Radius Interval
Arithmetic. IEEE Transactions on Computers, 66(8):1281–1292, aug 2017.

[5] F. Johansson. Numerical Evaluation of Elliptic Functions, Elliptic Integrals
and Modular Forms. 2018.

[6] L. J. P. Kilford. Modular Forms: A Classical and Computational Introduction
Second Edition. World Scientific Publishing Company, 2015.

[7] N. Koblitz and N. Koblitz. Introduction to Elliptic Curves and Modular Forms.
Graduate Texts in Mathematics. Springer New York, 1993.

[8] J. Polchinski. String theory, volume 1: An introduction to the bosonic string
theory, 2005.

[9] W. A. Stein and P. E. Gunnells. Modular Forms: A Computational Approach.

[10] M. S. Viazovska. The sphere packing problem in dimension 8. Annals of
Mathematics, pages 991–1015, 2017.

10

Appendix A. Plots

Figure A.6: Radial Logarithmic Colour Function

Identity

H =
arg(z)

2π

S = .9

V = dlog2(|z|)e
− log2(|z|)

e1/z

Figure A.7: Conformal Colour Function

Identity

H =
arg(z)

2π

S = .9

f(x) = (dxe − x)

(M −m) +m

V = dlog2(|z|)e
− log2(|z|)

ez

11

Figure A.8: Further Plots

(a) ∆(q) ∈M12(SL2(Z)) (b) E12(q)

(c) Quantitative Colour Func (d) E4(q)

(e) E4(z)

12

