
Arbitrary Precision Computation of Modular
Functions

Caelen Feller

Supervised by Prof. Jan Manschot

June 27 2018

Goals of Project

Software Library for

Arbitrary precision computation

Domain coloured plotting

Specifications

Well documented

Well tested

Efficient

Extensible

Visualisation

Domain Colouring - Examples 1

f(z) = z f(z) = z3 − 1

Domain Colouring - Examples 2

f(z) = (z − 0.5(1 + i))/z2 f(z) = e1/z

Domain Colouring - Examples 3

f(z) = ez f(z) = sin(z)

Domain Colouring - Examples 4

f(z) = log(z) f(z) = tan(z)

Mapping H to Unit Disk

H f(z) = 1
iπ log(z)

Colour Space

RGB Cube HSL Cylinder HSV Cylinder

Conversion from RGB to HSL/HSV

”Hexcone” model, standard feature in most environments.

Basic Colour Function

H =
arg(z)

2π

S = 1

L = 1− 2−|z|

Lalt = 1− 1

1 + |z|2

Identity

Colour Function - Contours

H =
arg(z)

2π

S = .9

V = dlog2(|z|)e − log2(|z|)

Identity

Colour Function - Conformality

H =
arg(z)

2π

S = .9

f(x) = (dxe − x)(M −m) +m

V = f(nH)× f
(
n log2(|z|)

2π

)

Brightness clamped to [m,M], n
subdivisons of radial hue

Colour Function - Transformation

H =
arg(z)

2π

S = .9

f(x) = (dxe − x)(M −m) +m

V = f(<(z))× f(=(z))

Brightness clamped to [m,M]

Other Colour Functions

Radial without logarithm! Qualitative Function

Colour Functions - Contour Examples

f(z) = z3 − 1 f(z) = (z − 0.5(1 + i))/z2

Colour Functions - Contour Examples

f(z) = e1/z f(z) = 1
iπ log(z)

Colour Functions - Contour Examples

f(z) = sin(z) f(z) = tan(z)

Colour Functions - Grid Examples

f(z) = sin(z) f(z) = z3 − 1

Colour Functions - Conformal Examples

f(z) = ez f(z) = 1
iπ log(z)

Colour Functions - Conformal Examples

f(z) = sin(z) f(z) = tan(z)

Modular Forms

Modular Group

Definition (Special Linear Group)

SL2(Z) =

{(
a b
c d

)
| a, b, c, d ∈ Z, ad− bc = 1

}

Generators

SL2(Z) = 〈S, T 〉 , S =

(
0 −1
1 0

)
T =

(
1 1
0 1

)

Definition (Group Action - Möbius Transformation)(
a b
c d

)
· z =

za+ b

zc+ d
, z ∈ Ĉ

Fundamental Domains

Definition (Fundamental Domain)

A fundamental domain F for a subgroup Γ of SL2(Z) is a closed
subset of H such that:

1 Every z ∈ H is Γ-equivalent to a point in the closure of F .

2 No two distinct points in H are Γ-equivalent.

Fundamental Domains for SL2(Z)

Principle Fundamental Domain for SL2(Z):
F = {z ∈ H| |<(z)| ≤ 1/2, |z| ≥ 1}

Modular Transformation

Definition (Modular)

f : H→ C transforms as a modular form of weight k if

f(γ · τ) = (cτ + d)kf(τ) ∀τ ∈ H, γ ∈ SL2(Z)

Remark

As SL2(Z) = 〈S, T 〉 this is equivalent to

f(τ + 1) = f(τ)

f(−1/τ) = (τ)kf(τ)

This means f(τ), τ ∈ F completely determines our function.

Modular Forms

Definition (Modular Form of SL2(Z))

A function f : H→ C is a modular form, of weight k if

1 f transforms as a modular form of weight k

2 f is holomorphic on H.

3 f is holomorphic at ∞
Mk(SL2(Z)) is the space of modular forms of weight k.

Fourier Expansions

As f(τ + 1) = f(τ), can write f =
∑
n∈Z

anq
n, q = e2πτi

f is holomorphic at ∞ iff an = 0, ∀n < 0

Eisenstein Series

Definition (Eisenstein Series of Weight k)

Let k ≥ 4, τ ∈ H. We define the function

Gk(τ) =
∑
m,n∈Z

(m,n) 6=0

1

(mτ + n)k

Proposition

Gk is an non-zero modular form of weight k.

Gk(τ + 1) = Gk(τ)

Gk(−1/τ) = (τ)kGk(τ)

Let Λ be a lattice in C.∑
06=z∈Λ

1

|z|k

Is abs conv for k > 2

E4 Graphs

E6 Graphs

Fourier Expansion

Proposition (Fourier Expansion for Gk)

Gk(τ) = 2ζ(k)

(
1− 2k

Bk

∞∑
n=1

σk−1(n)qn

)

Divisior Function

σt(n) =
∑
d|n

dt

Bernoulli Numbers

z

ez − 1
=
∑
n≥0

Bk
zn

n!

Definition (Normalized Eisenstein Series)

Ek =
1

2ζ(k)
Gk = 1− 2k

Bk

∞∑
n=1

σk−1(n)qn

(Can also normalise so q-coefficient is 1)

Cusp Forms - ∆

Definition (Cusp Form)

A modular form f is a cusp form(Sk(SL2(Z))) if it vanishes at ∞.
This is equivalent to having a0 = 0 in the Fourier expansion.

Definition (Modular Discriminant)

∆ = (2π)12E4(z)3 − E6(z)2

1728

Properties

∆ is a cusp form of weight 12, ∆ ∈ S12

∆ is the non-zero cusp form of lowest weight.

∆ Graphs

℘(τ, 1 + 1i) ℘(τ, 1 + 4i)

Modular Space Structure

Proposition

Mk(SL2(Z)), Sk(SL2(Z)) are finite dim, complex vector spaces.

Valence/Structure Formula

For f(z) non-zero, of weight k on SL2(Z), then

ord∞(f) +
1

2
ordi(f) +

1

3
ordρ(f)

∑
ω∈F
ω 6=i,p

ordω(f) =
k

12

Consequences

Any f ∈Mk(SL2(Z)) can be written in the form

f(z) =
∑

4i+6j

ci,jE4(z)iE6(z)j

Essentially giving us a basis for Mk(SL2(Z)).

Modular Functions

Definition (Modular Function)

f : H→ C is a modular function of weight k if

1 f transforms as a modular form of weight k

2 f is meromorphic on H, may have a pole for τ → i∞∪Q

Definition (Klien J-Invariant - Weight 0 Modular Function)

j(z) = 1728
(60G4(z))3

∆(z)
= 1728

E4(z)3

E4(z)3 − E6(z)2

Proposition

Modular functions of weight 0 are the rational functions of j.

If a modular function has no poles on H, and ord∞(f) = r,
we can write f as a degree r polynomial in j.

J Invariant Graphs

Series Computation

Error Bounding

Definition (Error Bound of Tail)

For convergent
∑∞

k=0 ak, E(n, x) ≥
∑∞

k=n ak is an n-bound.

Ideally, a bound will be easily solvable for a given precision.

Example (Some Bounds)∑n−1
k=0

(−1)kx2k+1

(2k+1)! is an n-bound for sine taylor series, as it is
alternating and decreasing.

|
∑∞

k=n
zk

k! | ≤ |
1

1−zn | is an n-bound for geometric
overestimation of exponential taylor series - broadly applicable.

Often, a more accurate bound may not be worth the extra
computation vs just computing more terms of the series.

Eisenstein Lambert N-Bound

Below, let q = |q| for convenience. For E4, this is an n-bound.
This converges quickly on F, not so much as q → 1

qn

(1− q)2

(
n3 +

3n2q

1− q
+

3nq(q + 1)

(1− q)2
+
q
(
q2 + 4q + 1

)
(1− q)3

)

For E6:

qn

(1− q)2

(
n5 +

5n4q

1− q
+

10n3q(q + 1)

(1− q)2
+

10n2q(q2 + 4q + 1)

(1− q)3

+
5nq(q + 1)(q2 + 10q + 1)

(1− q)4
+
q2(q3 + 26q2 + 66q + 26) + q

(1− q)5

)

The n-bound for Ek is
qn

1− q

∞∑
i=0

qi(n+i)k−1 =
qn

1− q
Φ(q, 1−k, n).

where Φ is the Lerch transcendent function, for which further expressions exist.

E4 Error Graphs

n such that error less than 1 Error as n increases for q = 0.5

Horner’s Method

Algorithm to evalutate polynomials

f(q) = aNq
N + · · ·+ a1q + a0

bN = aN

bN−1 = aN−1 + qbN
...

b0 = a0 + qb1 = f(q).

Improvements

Θ(N1/2) expensive multiplications with BSGS algorithm.
(Paterson and Stockmeyer 1973)

Theta Functions

Definition (Jacobi Theta Constants)

ϑ0(τ) =
∑
n∈Z

qn
2

ϑ1(τ) =
∑
n∈Z

(−1)nqn
2

ϑ2(τ) = q
1
4

∑
n∈Z

qn(n+1)

Transformation Rules for Theta Functions

ϑ(−1/τ) =
√
τ/i ϑ(τ)

This follows from application of Poisson summation∑
n∈Z

f(n) =
∑
n∈Z
F(f)(k)

Identities of the Theta Function

Eisenstein Identities

Due to the finite dimensionality of M4, M6, and the
transformation rules for ϑ we have:

E4 =
1

2

(
ϑ8

0 + ϑ8
1 + ϑ8

2

)
E6 =

1

2

(
−3ϑ8

2

(
ϑ4

0 + ϑ4
1

)
+ ϑ12

0 + ϑ12
1

)
Consequences

ϑ-decompositions exist for:

Modular forms of level
one.

Modular functions of
weight 0.

J-Invariant, Discriminant

∆ = (2π)12

(
1

2
ϑ0ϑ1ϑ2

)8

j = 32

(
ϑ8

0 + ϑ8
1 + ϑ8

2

)3
(ϑ0ϑ1ϑ2)8

Computational Motivation

Why derive these Identities?

ϑ q-series converges far more rapidly than Ek.

Extensive optimisation - by Hart & Johansson 2018 (Used in
Arb)

Sparse and Dense Exponent Sequences

Exponent sequence of
∑N

n=0 cnq
n is E = (en)Nn=0 Take T where

eN ≤ T , and eN+1 ≥ T

E is dense if N ∈ Ω(T)

E is sparse if en ∈ Θ(nα)

Addition Sequences

Addition Sequences

A set A ⊂ N such that 1 ∈ A, and ∀c ∈ A≥1 ∃a, b ∈ A, a+ b = c.
For example, the Fibonacci sequence.

For any sequence of positive integers, we can construct an addition
sequence by adding elements - ”double and add” algorithm.

Short Addition Sequences for Theta

We can form addition sequences from the exponent sequences,
allowing us to more easily group expensive multiplications of q.

Hart & Johansson found good addition sequences for the theta
functions, and implemented them in Arb using a variation of BSGS.

Ball Arithmetic

Definition (Ball Function)

A ball implementation of f : A→ B is F : A→ B such that for
X ⊂ A, F (X) ⊂ B and f(X) ⊂ F (X) - inclusion principle.

Benefits of Ball Arithmetic

Guaranteed inclusion of value.

Reduction of analysis of arithmetic error.

Lazy infinities - crude bound when input exceeds precision.

Drawbacks of Ball Arithmetic

Overestimation.

Error precomputation.

Algorithm convergence.

Implementation

Scientific Computing Environments

High Level Languages - Mathematica, Sage

Interpreted, interactive scripting.

Performance issues with scripting.

Interfaces for native extension code.

Sage: Flexibility due to Python, modular development.

Mathematica: Commercial stability, monolithic.

Low Level Languages - C/C++

Less intuitive, compiled, no unified mathematical framework.

Low level control of types, memory, processing, optimised.

Some excellent libraries for computer algebra make easier.

Can be used as a black box for other languages.

C for Mathematics - ARB, FLINT, MPFR/GMP

GMP/MPFR

Provides arbitrary size/precision integer/rational numbers.

Arithmetic, with standard rounding behaviour.

Extended in MPC, MPFI to complex numbers and interval
arithmetic.

FLINT, ARB

Libraries specifically for number theory.

FLINT handles and optimises GMP/MPFR for mathematics.

FLINT also has linear algebra, polynomial/matrix support.

ARB extends FLINT, ball arithmetic.

ARB provides many useful functions, namely modern modular
form implementations - addition sequence method.

C Form Library Structure

C Library Structure

User interface - Header Files.

Implementation - Compiled Binary Files.

C Form Library Interface

Algorithm Refinements

Improvements

Convergence is faster on the fundamental domain.

Can find γ ∈ SL2(Z) taking any point to fundamental domain.

All Eisenstein series are polynomials of E4, E6.

Recursion and Caching.

Parallelisation.

Precision

Series Length Prediction

Estimate the precision
needed for arithmetic,
repeat.

Output precision tested for
fitness of purpose.

Precomputed tables,
predictions.

Necessary error for plotting.

Generalisation

Congruence Subgroups

Standard Congruence Subgroups of SL2(Z)

Γ0(N) =

{(
a b
c d

)
≡
(
a b
0 d

)
mod N

}
Γ1(N) =

{(
a b
c d

)
≡
(

1 b
0 1

)
mod N

}
Γ(N) =

{(
a b
c d

)
≡
(

1 0
0 1

)
mod N

}

Definition (Congruence Subgroup of Level N)

A subgroup G ⊂ SL2(Z) such that Γ(N) ⊂ G. The maximal N
such that Γ(N) ⊂ G is the level of G.

Fundamental Domains

Γ1(4)

Gamma_1(4)

Eisenstein Series of level N

Definition (Eisenstein Series)

Gak(τ) = GamodN
k (τ) =

∑
m∈Z2

m≡amodN

1

(m1τ +m2)k

Definition (Dedekind Eta Function)

η(τ) = q1/24
∞∏
n = 1(1− qn)

η Graphs

	Introduction
	Visualisation
	Basics of Domain Coloured Plots
	Colour Functions

	Modular Forms
	Modular Group
	Fundamental Domains
	Weak Modularity, Modular Forms
	Eisenstein Series
	Fourier Series
	Cusp Forms and Modular Discriminant
	Modular Space Structure
	Modular Functions

	Series Computation
	Error Bounding
	Theta Functions
	Intro to Ball Arithmetic

	Implementation
	Environment
	Library Structure
	Algorithms
	Precision

	Generalisation
	Level N Forms
	Eisenstein Series

