
Visualising Parallel Computations for Education
on Raspberry-Pi Clusters

Parallel
Computing
Demos on
Wee Archie
Caelen Feller

I created a framework for visualising
parallel communications on a
Raspberry-Pi based parallel computer
Wee Archie. I used this to create
demonstrations illustrating basic parallel
concepts, and an interactive coastal
defence simulation.

EPCC has developed a small,
portable Raspberry-Pi based
“supercomputer” which is taken
to schools, science festivals etc.

to illustrate how parallel computers
work. It is called Wee Archie because
it is a smaller version of the UK national
supercomputer ARCHER. It is actually a
standard Linux cluster and it is straight-
forward to port C, C++ and Fortran
code to it. There are already a num-
ber of demonstrators which run on Wee
Archie that demonstrate the usefulness
of running demonstrations on a paral-
lel computer, but they do not specifi-
cally demonstrate how parallel comput-
ing works.

In this project, I developed a frame-
work for creating and enhancing new,
existing and in-development demonstra-
tions that show more explicitly how a
parallel program runs. This is done by
showing a real-time visualisation on the

front-end of Wee Archie, or by program-
ming the LED lights attached to each
of the 16 Wee Archie Pis to indicate
when communication is taking place
and where it is going (e.g. by display-
ing arrows). All of these visualisations
are triggered via the MPI (Message Pass-
ing Interface) profiling interface, a stan-
dard feature on all modern HPC sys-
tems, making this a drop-in solution for
most existing code.

Client Code Animation Server

Communication
Info

10100111010011

I developed visualisations for a tu-
torial illustrating the basics of paral-
lel communications and a coastline de-
fence demonstration. I also developed a
web interface for the tutorials to cre-
ate a more cohesive user experience.
In these demonstrations, I aimed to be
able to make it clear what is happening
on the computer to a general audience.

Animation Server

To display communications via the LED
panels (created by Adafruit), I used the
official Adafruit Python library. As such,
my visualisations are done in Python.

To allow all demonstrations to share
the panels safely, I start a queue on
each Pi on a separate background pro-
cess, where any demo can add an 8px ×
8px image to be displayed on the 8× 8
LED panels. I can also give these im-
ages properties such as how long to be

https://github.com/adafruit/Adafruit_CircuitPython_HT16K33


displayed and create parcels of images
together which form my various anima-
tions.

I had two major requirements from
my animation system. I need to allow
demonstrations developed in any pro-
gramming language to create an anima-
tion, and to be able to coordinate anima-
tions between Pis. To do this, I made a
web server on each Pi using Flask which
will place an animation in queue when
you make a certain web request against
it. You must provide options for anima-
tion length, type, and type-specific op-
tions as discussed below.

Point to Point Visualisations

In MPI, an important class of commu-
nications are “point to point” commu-
nications. These are when a message is
passed from one node (here meaning
a Raspberry Pi) to another directly. In
its most basic form, a node will start to
send to some destination, and wait un-
til that destination has begun to receive
from the correct source before begin-
ning to transfer the message.

Given the ability to add a sequence
of images to a queue, how can I accu-
rately visualise a "send" and "receive" op-
eration between two Pis? My approach
was to use a Python “pipe”. When an
animation is reached in queue, it will
show an “entry” and stop, using the pipe
to wait until the server allows it to con-
tinue. This allowed me to synchronise
and wait on animations between Pis.
This accurately replicates the behaviour
of MPI messaging.

This behaviour is known as a “syn-
chronous” or “blocking” send. There
also exists a “non-blocking” send. The
main difference between blocking and
non-blocking communications is that us-
ing non-blocking communication, the Pi

will continue working, not waiting for
the communication to start, and do the
communication in the background. This
is a more efficient but less safe form
of communication, and I provided visu-
alisation for it as it is commonly used.

Other differences are discussed in the
MPI standard.1

Collective Visualisations

The next major class of MPI communi-
cations are “collectives” - when many
nodes want to communicate others at
once. Say I want to distribute some re-
sult to every node - this is done using a
broadcast. According to the standard,1

this will cause every node participating
to wait until it has the correct output
before continuing, though the exact tim-
ing varies.

For clarity and consistency, in collec-
tive communication visualisations, all
participants wait until the communica-
tion is done overall before continuing.
The implementation is similar to that of
waiting in point to point.

There were several other types of
communication I visualised (gathering,
scattering and reduction), whose imple-
mentation is similar. With gathering, the
result is collected from each node and
stored on one. With scattering, the re-
sult on one node is split into small, even
parts and distributed to many. With re-
duction, the result is gathered but an
operation is done to it as it is collected
such as a sum or product. For more de-
tails on these, see the MPI standard.1

C and Fortran Framework

While demonstrations for Wee Archie
typically use Python for their user in-
terface, they use the C and Fortran
languages in computations for perfor-
mance reasons. Thus, it was desirable
to create a wrapper around MPI in these
languages which will automatically let
the animation server know when a a
communication is started.

Communication
Info

Animation ServerWee MPI

MPI

Client Code

1010011

I did this using
the MPI profiling in-
terface. MPI inter-
nally refers to func-
tions using “weak
symbols”, which al-
lows you to over-
ride the functions
provided by the li-
brary and allows a

library developer to call their visual-
isation and logging code. The frame-
work includes visualisations for most
MPI communications, all shown on the
next page.

Application-Specific Animations

Often a demonstration will require
unique animations, such as a context-
appropriate “working” animation, or a
visualisation of some communication at
a higher level of abstraction than MPI,
such as the “haloswaps” of the coastal
defence demonstration. Here, the ani-
mation server can be contacted using a
non-MPI process which directly contacts
the server and requires modification of
the source code.

Unified Web Interface

As these demonstrations are used for
outreach, the surrounding narrative is
important for audience engagement. To
improve this aspect of the Wee Archie
interface is an important aspect of ex-
plaining more complex concepts such
as parallel communication. In previous
demonstrations for Wee Archie, a frame-
work written in Python is used to dis-
play a user interface on a connected
computer. This starts the demonstra-
tion by contacting a demonstration web
server running on Wee Archie, which in
turn uses MPI to run the code on all of
the other Raspberry Pis. It returns any
results to the client continuously.

I created an internal website for
Wee Archie, but due to the performance
constraints of serving complicated web-
sites from a Raspberry Pi while it’s han-
dling so many communications already,
I opted to make it a static website - one
which does not require processing by
the server other than providing the cor-
rect files. I did this using the Gatsby
framework.

In order to allow the static web-
site to start a demonstration, I wrote
my own version of the Wee Archie
framework in JavaScript. This frame-
work uses the Axios library to manage
communication with the demonstration
server, and the React framework to pro-
vide a generic demonstration web inter-
face.

Basic MPI Tutorials

This series of tutorials consist of a set of
ten demonstrations to be run on Wee
Archie and accompanying text. They
are aimed at a complete beginner, who
does not have programming experience,
but can understand the concept of a
program doing work, and take them
through all of the concepts Wee MPI
has to offer.

https://flask.palletsprojects.com/en/1.0.x/
http://gatsbyjs.org/
http://gatsbyjs.org/
https://github.com/axios/axios
https://reactjs.org


Figure 1: Left: Top: Send and Receive, Middle: Broadcast, Bottom: Gather. Right: Top: Scatter, Middle: Reduce (Sum), Bottom: Wave
demonstration in progress.

The first two demonstrate the ben-
efits of parallel computing through the
analogy of cooking, showing an embar-
rassingly parallel problem and then, in-
troducing conflict and making the prob-
lem less perfectly parallel, showing the
need for efficient communication. The
next series go through point to point
communications, first showing a loop of
blocking and then non-blocking sends
and receives. The final set discusses col-
lective communications, demonstrating
what each do and showing their ani-
mations. It also shows the way that a
broadcast could created using point to
point communications.

Coastal Defence Demonstration

In the demo, the ocean is broken up
into wide horizontal strips.2 Each strip
is processed by a single Raspberry Pi.
However, there needs to be some com-
munication so that waves can propagate
throughout the simulation.

To do this, after every tick of the
equation solver that is run in the simu-
lation, the edges of these strips are ex-

changed between Pis. This is known as
a “haloswap” and is shown by a custom
animation. As many thousands of these
occur during the simulation, I only show
every hundredth haloswap.

Recommendations

The main goal of the project was to cre-
ate an extensible and easily used frame-
work to visualise parallel communica-
tions in any language. By using the an-
imation server-client architecture and
the profiling interface, this goal has
been accomplished.

As demonstrated in the tutorials and
coastal defence simulation, this func-
tions in practice, and as the animations
can easily be modified or turned off,
there is nothing stopping adoption in

future demos.
It also would be an improvement

were all demonstrations for Wee Archie
done using the web framework, as this
would allow users to easily switch be-
tween demonstrations, and provide a
surrounding explanation. It also allows
for novel, interactive visualisations with
the use of new features such as WebGL,
and the D3 JavaScript library.

References
1 Message Passing Interface Forum (2015). MPI: A

Message-Passing Interface Standard Version 3.1

2 EPCC, The University of Edinburgh (2018). Wee
Archie Github Repository

PRACE SoHPCProject Title
Parallel Computing Demonstrators on
Wee Archie

PRACE SoHPCSite
EPCC, Scotland

PRACE SoHPCAuthors
Caelen Feller, TCD, Ireland

PRACE SoHPCMentor
Gordon Gibb, EPCC, Scotland

Caelen Feller

PRACE SoHPCProject ID
1907

https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://github.com/EPCCed/wee_archie
https://github.com/EPCCed/wee_archie
http://summerofhpc.prace-ri.eu
mailto:fellerc@tcd.ie
mailto:g.gibb@epcc.ed.ac.uk

